Resistances along the CO2 diffusion pathway inside leaves.
نویسندگان
چکیده
CO(2) faces a series of resistances while diffusing between the substomatal cavities and the sites of carboxylation within chloroplasts. The absence of techniques to measure the resistance of individual steps makes it difficult to define their relative importance. Resistance to diffusion through intercellular airspace differs between leaves, but is usually of minor importance. Leaves with high photosynthetic capacity per unit leaf area reduce mesophyll resistance by increasing the surface area of chloroplasts exposed to intercellular airspace per unit leaf area, S(c). Cell walls impose a significant resistance. Assuming an effective porosity of the cell wall of 0.1 or 0.05, then cell walls could account for 25% or 50% of the total mesophyll resistance, respectively. Since the fraction of apoplastic water that is unbound and available for unhindered CO(2) diffusion is unknown, it is possible that the effective porosity is <0.05. Effective porosity could also vary in response to changes in pH or cation concentration. Consequently, cell walls could account for >50% of the total resistance and a variable proportion. Most of the remaining resistance is imposed by one or more of the three membranes as mesophyll resistance can be altered by varying the expression of cooporins. The CO(2) permeability of vesicles prepared from chloroplast envelopes has been reduced by RNA interference (RNAi) expression of NtAQP1, but not those prepared from the plasma membrane. Carbonic anhydrase activity also influences mesophyll resistance. Mesophyll resistance is relatively insensitive to the manipulation of any step in the pathway because it represents only part of the total and may also be countered by pleiotropic compensatory changes. The parameters in greatest need of additional measurements are S(c), mesophyll cell wall thickness, and the permeabilities of the plasma membrane and chloroplast envelope.
منابع مشابه
Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis.
Light-mediated chloroplast movements are common in plants. When leaves of Alocasia brisbanensis (F.M. Bailey) Domin are exposed to dim light, mesophyll chloroplasts spread along the periclinal walls normal to the light, maximizing absorbance. Under high light, the chloroplasts move to anticlinal walls. It has been proposed that movement to the high-light position shortens the diffusion path for...
متن کاملLateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves.
Gas exchange is generally regarded to occur between the leaf interior and ambient air, i.e. in vertical (anticlinal) directions of leaf blades. However, inside homobaric leaves, gas movement occurs also in lateral directions. The aim of the present study was to ascertain whether lateral CO2 diffusion affects leaf photosynthesis when illuminated leaves are partially shaded. Measurements using ga...
متن کاملLateral gas diffusion inside leaves.
Diffusion of CO2 inside leaves is generally regarded to be from the substomatal cavities to the assimilating tissues, i.e. in the vertical direction of the leaf blades. However, lateral gas diffusion within intercellular air spaces may be much more effective than hitherto considered. In a previous work it was demonstrated that, when 'clamp-on' leaf chambers are used, leaf internal 'CO2 leakage'...
متن کاملLateral diffusion of CO2 in leaves is not sufficient to support photosynthesis.
Lateral diffusion of CO(2) was investigated in photosynthesizing leaves with different anatomy by gas exchange and chlorophyll a fluorescence imaging using grease to block stomata. When one-half of the leaf surface of the heterobaric species Helianthus annuus was covered by 4-mm-diameter patches of grease, the response of net CO(2) assimilation rate (A) to intercellular CO(2) concentration (C(i...
متن کاملMathematical Modeling of Adsorption Process of Ethyl Acetate Impurity of Supercritical CO2 on Activated Carbon
A mathematical model is described and applied for adsorption process of ethyl acetate from supercritical CO2 stream on activated carbon particles. This model has the ability of illustrating variation of effluent concentration towards different parameters such as flow rate, temperature and pressure. In this research, a vast area of operational conditions is experienced. Mass transfer resistance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 60 8 شماره
صفحات -
تاریخ انتشار 2009